喇叭图标
 郑州凯威防雷是河南省防雷协会理事单位,是从事防防雷工程设计施工的乙级资质公司,防雷工程涵盖银行证券、文物古建筑、城市建筑物、煤矿工业企业等行业的信息系统防雷和建筑物直击雷防护。

山西离石火车站综合防雷方案

1、 综述
2、 站基防雷分析
3、 设计参照标准
4、 直接雷防护
5、 雷击电磁脉冲防护
6、 方案设计思想
7、 防雷设计依据
8、 防雷方案设计
9、 验收方法
10、工程设计进度表
11、材料汇总表
12、工程报价汇总表
13、提供的服务
14、企业简述
一、综述:吕梁火车站的建设是吕梁人民生活中的一件大事,整个车站综合防雷性能的优劣直接关系到车站调度枢纽系统的运行效率和日常运营中的生命财产安全。随着现代化的进展,铁路站内设备越来越先进。雷击发生时,雷击放电诱发雷击电磁脉冲过电压和过电流,经站场电源系统、通信信号传输通道、接地系统及建筑物直击雷防护系统,通过传导、感应的方式损坏站内通信信号设备及网络通信设备,造成损失巨大,直接威胁铁路正常的安全运输生产。直接雷的侵袭又将威胁到工作人员和站内外流动旅客的生命安危,关系到整个社会稳定问题。因此,吕梁火车站这一新的标志性的形象工程的防雷设计施工便凸显出其重要性和必要性。
二、对铁路站场雷电防护的分析
铁路站场设备遭受过电压和过电流攻击的途径可分为直击雷、感应雷、传导雷、操作过电压四种。结合站场设备的分布特点及雷电攻击的途径类型,铁路站场雷电防护存在以下特点。
1.铁路站场占地面积较大,站场直接雷防护和楼内主要设备(如数字微波通信、车站数字通信分系统、站场广播机、无线列调通信、平面调车通信、信号微机联锁等设备)集中在候车大厅、火车站广场和信号楼、通信楼。广场、大厅、信号楼、通信楼的避雷针应能满足对整个车站整体和信号楼、通信楼区域的保护,有效防止直击雷的袭击。
2.铁路道轨是接受直击雷和传导雷感应雷的良好导体。与道轨连接的相关铁路信号设备,如信号机、轨道电路箱、道岔电动转辙机等,将受到雷击的严重威胁。
3.信号楼微机联锁及通信机房、通讯楼通讯机房等重要区域的户外线路可能遭受到直击雷后,线路中的大电流串入各机房内部,从而引起对内部设备的损坏。当雷雨云之间、雷雨云对大地之间放电时,雷闪电流的高频电磁场对暴露在空间或室内的电源线、信号线、数据线上产生远远超过设备抗电强度的感应雷击过电压,使设备损坏。
4.雷电防护的原则是“等电位”。由于机房存在多类接地系统,其冲击接地电阻不均衡,在雷击发生时,雷电流引起地电位差,造成“地电位反击”,使人员和设备遭受损害。
5.操作过电压引起的危害,如储藏设备的开关、输电线路的短路、周围大容量设备运行时产生的工业干扰或操作过电压在电源线上会产生5000~6000V、3KA的浪涌过电压及浪涌电流,它们的窜入也会将信号楼、通信楼内的设备产生很大的破坏后果。
从以上分析中可以得出:为了提高铁路车站广场、建筑物安全及机房设备和计算机、通信网络、监控设备等的运行可靠度,整个站场的雷电防护系统一定要有良好的接闪器、引下线和统一的接地网,采取完善的直击雷、侧击雷、感应雷防护措施。同时必须在车站的供电系统、天馈系统、信号采集传输系统、程控交换系统、计算机网络系统、机房接地系统等进行可靠有效的防护,在拦截、分流、均衡、接地、布线、布局等方面作完整的,多层次的综合防护。
基于以上分析,吕梁火车站宜选用先进的预放电型接闪器作为直击雷防护避雷针,选用列电源及数据信号防雷器件,对主要机房设备和重要终端进行雷击电磁脉冲防护。
三、设计参照标准
铁路站场综合防雷的设计主要执行或参照以下标准:GB50057-94《建筑物防雷设计规范》2000年版、GA267-2000《计算机信息系统雷击电磁脉冲安全防护规范》、 GB7450—87《电子设备雷击保护导则》、GB50174-93《电子计算机机房设计规范》、 GB9361—88《计算站场地安全要求》等。铁路站场雷电防护总的原则是经等电位连接,使过电压(或电流)以最直接的路径尽快泄漏到大地,达到保护设备的目的。电磁兼容防护总的原则是利用室内的金属物有机地构成一个“法拉第笼”,进行接地连接。站场综合防雷设计本着安全可靠、技术先进、经济合理的原则,达到防御或减轻雷电灾害、提高防雷安全度的目的。
四、直击雷防护
(一)接闪器
普通避雷针,通常即为一根铁棒,将端部磨尖,通过接地引下线将地电位(通常认为零电位)引至针尖,利用针尖的高度(比被保护物高出许多),比被保护物优先产生上行先导,与雷云的下行先导相遇,从而达到引雷入地的效果,保护其它建筑物免受雷击的侵害。
预放电型接闪器利用了雷云产生的空间电场强度,预先使周围的空气电离,空气离子在空间电场的作用下加速接近雷云,从而使迎面先导大大提前与雷云的下行先导相遇,使得引雷的可靠性和半径提高大大保护,增强了保护性能。
预放电型避雷针为先进的纯结构型预放电避雷针。它利用雷云在空中感应的电场强度,使针头的感应电极(空中场强)与针尖(地电位)之间产生强烈的火花放电,使针头周围空气电离,在电场的作用下形成一条向上的雷电先导,从而使迎面先导提前与雷云的下行先导相遇,形成主放电通道,从而大大提高了避雷针的效率,使保护半径大大提高。由于其内部无任何电子元件,避免了老化问题,所以更加可靠,不需维护。此类避雷针比普通避雷针提前产生上行先导的时间称为“预放电时间”,这是考核预放电型避雷针性能的重要指标,已列入法国等一些欧洲国家的国家标准。铁运处所属车站选用先进的法兰西GUERETIF3 预放电型避雷针作为直击雷防护避雷针,对站场可能遭受直击雷的重点区域实施直接雷的防护。该类避雷针的特点如下。
1.最快的抢先预放电时间86us,即优先引雷入地,保护半径大大增加,为目前国际上中抢先时间最快的预放电避雷针。
2.在相同的安装高度下,比普通避雷针的保护半径大十几倍,大大提高了防护效率。
3.避雷针内部无电子部件,更加安全,减少故障隐患,无老化,不需维护。
4.选用了世界最好的防腐316L不锈钢材料,永不生锈。
5.重量很轻,何载小,对支撑物的荷载要求低。
(二)直击雷防护方案
铁路站场直击雷防护重点区域是广场、候车大厅、通信楼、信号楼和户外岔群咽喉区设备。
1. 广场直接雷防护。a、在广场中心位置矗立的中央照明灯顶部增加防直接雷装置;b、在广场四周矗立装饰性避雷接闪器,确保覆盖整个广场区域。
2.候车大厅按照设计方案采用避雷带和建筑屋顶金属设计进行直接雷防护。
3.通信楼直击雷防护。利用通信楼附近的高约45米微波塔,在塔顶上安装IF3 避雷针,避雷针安装高度超出塔顶2.5米。经计算,避雷针对地面的保护半径可达119米。引下线采用截面大于12mm×4mm的镀锌扁钢。防雷接地装置接地电阻小于1欧。该避雷针可保护通信楼、部分铁轨和场区部分咽喉区的部分信号机等铁路设备,免受直击雷的侵害。
4.信号楼直击雷防护。利用被保护建筑物信号楼,高度约为10米,在信号楼顶部安装IF3避雷针,针的安装高度超出楼顶5米。经计算,保护半径可达109米。楼顶预埋 350mm×350mm×10mm厚钢板,便于焊接避雷针底座,从底座延相反方向焊接引出两条引下线,引下线采用大于8mm的圆钢沿楼外墙引下入地,与楼的接地环相连。防雷接地装置接地电阻小于1欧。将避雷针与接地装置贯通。保护信号楼及场区附近的铁轨避免由于直击雷击中铁轨雷电流窜入信号楼,对设备及人身安全造成危害。
五、雷击电磁脉冲防护
(一)防雷器
选用世界一流的德国OBOBETTERMANN系列电源防雷器件,对铁路站场主要机房设备和重要终端进行雷击电磁脉冲防护。它具有以下特点。
1.应用新型高能量密度的石墨电极材料,特性耐久不变。
2.采用多电极堆保证了可控制的能量分配,并联电容控制对模块达到低残压水平,通过这种设计,具有良好的续断遮断,达到对续流的完全熄灭。
3.密封设计,安装方式没有限制,无电弧外泄,无须使用大体积的隔离金属箱。
4.无须断电,所有模块都可取下检测和更换,可大量节约维护费用。
5.安装简单,支持凯文接线,N/PE端的隧道式连接,免除调线的繁琐。
6.容通电流大,反应速度快,插入损耗小。
7.采用NPE模块的防雷器可在电网出现故障时,即使地阻值高或地线不良的情况下,流经防雷器的电流可使前级保险丝脱逃,防雷器与电网隔离,防止防雷器损坏。
(二)雷击电磁脉冲防护方案
1.对缆线布放和接地系统的要求
铁路站场主要设备集中在信号楼、通信楼。雷击电磁脉冲防护的重点是信号楼和通信楼内的敏感电子设备。在进行电源和信号线防雷器配置时,根据有关规范要求,应从以下几个方面进行设计考虑。
(1)电力电缆应埋地引入建筑物,电缆埋地部分不应小于15米(GA267-2000第 7、第8条)。室外卫星馈线和其它各种通信、信号电缆应采用具有双层金属防护层的电缆,其外层金属防护层在顶部及进入机房入口处的外侧应就近接地。当采用单层屏蔽电缆或无屏蔽线缆时,应穿金属管或金属线槽引入建筑物内,金属管(或线槽)的两端就近接地,金属管 (或线槽)的连接处应有效跨接(GB50057-94第6.3.1条)。
因此,出入信号楼、通信楼的电力电缆(线)、通信缆线、信号电缆应采用金属护套电缆或敷设在金属管内,缆线金属护套或金属管应在顶部及进入机房入口处的外侧就近分别接地;进入信号楼、通信楼低压电力电缆宜全程埋地引入,其电缆埋地长度不应小于 15m;微波铁塔上架设的同轴电缆应穿在金属管内,金属管应分别在上下端接地;进入机房的电缆桥架应屏蔽接地。
(2)信号楼、通信楼应采用共用接地系统(GB5005794第6.3.3条)。因此,一栋楼内的电子设备应共用一组接地装置,应按均压、等电位的原理,将工作地、保护地和防雷地组成一个联合接地网。站内各类接地线应从接地汇集线或接地网上分别引入。通信楼的接地装置应按照YD5068—98(移动通信基站防雷与接地设计规范)的要求予以改造。
2.信号楼雷击电磁脉冲防护
信号楼主要包括微机联锁设备、无线列调及平面调车车站电台、计算机服务器、站场广播机及车站数字通信分系统等设备。
针对信号楼电源线分两路架空引入,供电方式为TT制式。在总配电箱安装两套 OBO3*MC50-B+l*MCl25B第一级电源防雷箱,在交直流配电屏电源入线端加两套V20-C/3+NPE 电源防雷器及在车站综合柜入线端安装一套V20-C/I+NPE电源防雷器为第二级电源防雷器。需要注意的是第一级与第二级防雷器之间的线路应保持5m以上的距离。无线列调及平面调车车站设备,在天馈线进入调度机房入口与设备联接处安装DS-N馈线防雷器,注意设备机壳及防雷器地线良好接地。防雷器前端均串接20A动力型空气开关。
户外信号机、道岔、轨道电路与室内相连的信号线,是重要的引雷路径,需根据每一根信号线上电压的不同相应安装防雷器,分别选择V20-C系列防雷器进行防护:对于交流和直流220伏信号线采用V20-C/4+NPE电源防雷器进行防护;对于交直流10~24V信号线采用V20-C/1~75V进行防护;防雷器前端均串接20A动力型空气开关。
由于信号设备的保护地与工作地严格分开,雷击发生时,两个地线系统可能出现瞬间电压差,造成电子设备及人身的损坏和伤害。为了达到有效的防雷保护,在两个地之间安装OBO地极保护器480。其特点是:正常工作状态下,两地相互无干扰;雷击状态下, 480迅速导通,两地电压均衡,消除反击电压;响应时间小,纳秒级导通;安装方便,直接连接于两接地汇流排之间。
3.通信楼雷击电磁脉冲防护
针对通信楼电源分两路架空引入,引雷几率较大,低压电缆应地埋15m以上引入通信楼,在主配电箱安装两套3*MC50-B+1*MCl25-B第一级电源防雷箱。在数字微波入线端第二级电源防雷器V20-C/I+NPE。由室外引入的微波收发馈线均安装DS-N馈线防雷器。在电缆充气设备电源入线端安装第二级电源防雷器V20-C/I+NPE。在机房内安装等电位连接排 4801,机房内所有设备的机壳及防雷器接地线都连接至等电位连接排上。所有设备的机壳均可靠接地,所有接地线共用一组接地装置。接地电阻为1欧姆以下。防雷器前端均串接20A动力型空气开关。
系统防雷方案包括外部防雷和内部防雷两个方面:
外部防雷包括接闪器、避雷带、引下线、接地极等等,其主要的功能是为了确保建筑物本体免受直击雷的侵袭,将可能击中建筑物的雷电通过接闪器、避雷带、引下线等,泄放入大地。
内部防雷系统是为保护建筑物内部的设备以及人员的安全而设置的。通过在需要保护设备的前端安装合适的避雷器,使设备、线路与大地形成一个有条件的等电位体。将可能进入的雷电流阻拦在外,将因雷击而使内部设施所感应到的雷电流得以安全泄放入地,确保后接设备的安全。
避雷带、引下线(建筑物钢筋)和接地等构成的外部防雷系统,主要是为了保护建筑物本体免受雷击引起的火灾事故及人身安全事故,而内部防雷系统则是防止感应雷和其他形式的过电压侵入设备造成损坏,这是外部防雷系统无法保证的。
雷电对电气设备的影响,主要由以下四个方面造成:①直击雷;②传导雷; ③感应雷;④开关过电压。
直击雷:是指带电云层与大地上某一点之间发生迅猛的放电现象。直击雷威力巨大,雷电压可达几万伏至几百万伏,瞬间电流可达十几万安,在雷电通路上,物体会被高温烧伤甚至融化。通常在建筑物顶部安装避雷针或避雷网等来防直击雷。直击雷其中接近40%的能量将通过建筑物的供电系统分流,其中5%左右的能量通过建筑物的通信网络线缆分流,其余的雷击能量通建筑物的避雷针及其他金属管道、缆线分流。这里的能量分配比例会随着建筑物内的布线状况和管线结构而变化。
传导雷(雷电波侵入):在更大的范围内(几公里甚至几十公里),雷电击中电力或信息通讯线路,然后沿着传输线路侵入设备。其中地电位反击也是传导雷中的一种:雷电击中附近建筑物或附近其他物体、地面,导致地电压升高,并在周围形成巨大的跨步电压。雷电可能通过接地系统或建筑物间的线路入侵雷电延建筑物内部设备形成地电位反击。
感应雷(雷电波感应):在周围1000公尺左右范围内(有资料为 500公尺或 1500公尺,距离应随着雷击大小和屏蔽措施而变化)。发生雷击时,LEMP 在上述有效范围内,在所有的导体上产生足够强度的感应浪涌。因此分布于建筑物内外的各种电力、信息线路将会感应雷电而对设备造成危害。
随着现代高科技的发展,精密仪器,通讯设备,数据网络的应用越来越广泛,因而感应雷造成的雷击事故也越来越多,除直接造成了巨大的经济损失外,因重要设备损坏使系统网络陷入瘫痪后造成间接的损失更是惊人。
六、方案设计思想
(1)直击雷的外部防护措施
虽然有不少专家学者在努力的研究有效的防止直击雷的方法,但直到今天我们还是无法阻止雷击的发生。实际上现在公认的防直击雷的方法仍然是200年前富兰克林先生发明的避雷针。
A.接闪器
避雷针及其变形产品避雷线、避雷带、避雷网等统称为接闪器。历史上对接闪器防雷原理的认识产生过误解。当时认为:避雷针防雷是因为其尖端放电中和了雷云电荷从而避免了雷击发生,所以当时要求避雷针顶部一定要是尖端,以加强放电能力。后来的研究表明:一定高度的金属导体会使大气电场畸变,这样雷云就容易向该导体放电,并且能量越大的雷就越易被金属导体吸引。这样接闪器的防雷是因为将雷电引向自身而防止了被保护物被雷电击中。现在认为任何良好接地的导体都可能成为有效的接闪器,而与它的形状没有什么关系。
为了降低建筑被雷击的概率,宜优先采用避雷网、作为建筑物的接闪器,如果屋面有天线等通信设施可在局部加装避雷针保护,这样接闪器的高度不会太高,不会增大建筑的雷击概率。避雷网的网格尺寸应不大于10mX10m,避雷针应与避雷网可靠连接。
B.引下线
引下线的作用是将接闪器接闪的雷电流安全的导引入地,引下线不得少于两根,并应沿建筑物四周对称均匀的布置,引下线的间距不大于18米,引下线接长必须采用焊接,引下线应与各层均压环焊接,引下线采用10毫米的圆钢或相同面积的扁钢。对于框架结构的建筑物,引下线应利用建筑物内的钢筋作为防雷引下线。
采用多根引下线不但提高了防雷装置的可靠性,更重要的是多根引下线的分流作用可大大降低每根引下线的沿线压降,减少侧击的危险。其目的是为了让雷电流均匀入地,便于地网散流,以均衡地电位。同时,均匀对称布置可使引下线泻流时产生的强电磁场在引下线所包围的电信建筑物内相互抵消,减小雷击感应的危险。
C接地体
接地体是指埋在土壤中起散流作用的导体,接地体应采用:
钢管直径大于50毫米,壁厚大于3.5毫米;
角钢不小于50×50×5毫米
扁钢不小于50×5毫米。
应将多根接地体连接成地网,地网的布置应优先采用环型地网,引下线应连接在环型地网的四周,这样有利于雷电流的散流和内部电位的均衡。垂直接地体一般长为1.5-2.5米,埋深0.8米,地极间隔5米,水平接地体应埋深1米,其向建筑物外引出的长度一般不大于50米。框架结构的建筑应采用建筑物基础钢筋做接地体。
(2)直击雷电流在电源系统的分配:
根据GB50057-94的标准对直击雷电流分类:
第一类 200KA 10/350us
第二类 150KA 10/350us
第三类 100KA 10/350us
一个能量为200KA的直击雷,由整个系统的电源、管线、地网、通信网络线来分担。以一栋建筑的防雷来讲,电源部分承担其中近45%(100KA),以三相四线为例,每线承担大约有25KA(10/350us)的雷电流。通信站基本无管道系统,不计。地网和通信线路承担剩余55%的雷电流。由此可见,电源系统对直击雷的防护非常关键。
由此可见,直击雷的内部防护措施应选用10/350us冲击雷电流的开关型SPD产品。另外,对于个别架空线引入的传导雷,也应采用上述一级防护措施。
(3)感应雷的防护
前面已提到感应雷是因为直击雷放电而感应到附近的金属导体中的,其实感应雷可通过两种不同的感应方式侵入导体,一是静电感应:在雷云中的电荷积聚时,附近的导体也会感应上相反的电荷,当雷击放电时,雷云中的电荷迅速释放,而导体中原来被雷云电场束缚住的静电也会沿导体流动寻找释放通道,就在电路中形成电脉冲。二是电磁感应:在雷云放电时,迅速变化的雷电流在其周围产生强大的瞬变电磁场,在其附近的导体中产生很高的感生电动势。研究表明:静电感应方式引起的浪涌数倍于电磁感应引起的浪涌。
感应雷可以通过电力电缆、视频线、网络线和天馈线等侵入,由于电力电缆的距离长且对雷电波的传输损耗小,所以由电源侵入的感应雷造成的危害十分突出,按原邮电部的统计约占了雷击事故的80%。因此,对建筑物内的系统设备进行感应雷防护时,电源是重点。
感应雷还可以通过空间感应侵入通信站的内部线路,虽然经过建筑物和机壳的屏蔽衰减后其能量大为减小,但站内许多电信设备的抗过压能力也很弱,如果处理不当也可能造成设备故障。
(4)接地汇集线的布置
接地汇集线(汇流排)应布置在靠近避雷器的地方,以使避雷器的接地连接线最短,各楼层的分汇集线应直接与楼底的总汇集线相连,这样能保证实现单点接地方式,当楼层高于30米时,高于30米部分的分汇集线应与建筑物均压环相连,以防止侧击。
近年来IEC的研究认为:接地汇集线的多重互连是有益的,但部标尚未采纳。
(5)等电位连接
各种系统的防雷要求种类很多,但其防雷思想是一致的,就是努力实现等电位。绝对的等电位只是一个理想,实际中只能尽量逼近,目前是综合采分流、屏蔽、箝位、接地等方法来近似实现等电位。
(6)电源避雷器的选择和应用原则
考虑到电源负荷电流容量较大,为了安全起见及使用和维护方便,数据通信电源系统的多级防雷,原则上均选用并联型电源避雷器。电源避雷器的保护模式有共模和差模两方式。共模保护指相线-地线(L-PE)、零线-地线(N-PE)间的保护;差模保护指相线-零线(L-N)、相线-相线(L-L)间的保护。对于低压侧第二、三、四级保护,除选择共模的保护方式外,还应尽量选择包括差模在内的保护。
残压特性是电源避雷器的最重要特性,残压越低,保护效果就越好。但考虑到我国电网电压普遍不稳定、波动范围大的实际情况,在尽量选择残压较低的电源避雷器的同时。还必须考虑避雷器有足够高的最大连续工作电压。如果最大连续工作电压偏低,则易造成避雷器自毁。
电源系统低压侧有一、二、三级不同的保护级别,应根据保护级别的不同,选作合适标称放电电流(额定通流容量)和电压保护水平的电源避雷器,并保证避雷器有足够的耐雷电冲击能力。原则上,每一级的交流电源之间连接导线超过25m以上,都应做该级相应的保护。
电源低压侧保护用的电源避雷器,应该选择有失效警告指示、并能提供遥测端口功能的电源避雷器,以方便监控、管理和日后维护。
电源避雷器必须具有阻燃功能,在失效、或自毁时不能起火。
电源避雷器必须具有失效分离装置,在失效时,能自动与电源系统断开,而不影响通信电源系统的正常供电。
电源避雷器的连接端子,必须至少能适应25mm²的导线连接。安避避雷器时的引线应采用截面积不小于25mm²的多股铜导线,建议使用 25mm²的多股铜导线,并尽可能短(引线长度不宜超过1.0m)。当引线长度超过1.0m时,应加大引线的截面积;引线应紧凑并排或绑扎布放。
电源避雷器的接地:接地线应使用不小于25~35mm²的多股铜导线,并尽可能就近与交流保护地汇流排、或总汇流排、接地网直接可靠连接。
七、防雷设计依据
(1) 建筑物防雷设计规范 GB50057-94
(2) 电子计算机机房设计规范 GB50174-93
(3) 民用建筑电气设计规范 JGJ/T16-92
(4) 计算站场地安全要求 GB9361-88
(5) 计算站场地技术文件 GB2887-89
(6) 计算机信息系统防雷保安器 GA173-1998
(7) 雷电电磁脉冲的防护 IECI312
(8) 微波站防雷与接地设计规范 YD 2011-93
(9) 通信局(站)接地设计暂行技术规定 YDJ26E9
八、防雷方案设计
(1)前端设备的防雷
a)前端设备有室外和室内安装两种情况,安装在室内的设备一般不会遭受直击雷击,但需考虑防止感应雷过电压对设备的侵害,而室外的设备则同时需考虑防止直击雷击。
b)前端设备如摄像头应置于接闪器(避雷针或其它接闪导体)有效保护范围之内。当摄像机独立架设时,避雷针最好距摄像机3-4米的距离。如有困难SPD也可以串接在摄像机的支撑杆上,引下线可直接利用金属杆本身或选用Φ 8的镀锌圆钢。为防止电磁感应,沿杆引上摄像机的电源线和信号线应穿金属管屏蔽。
c)为防止雷电波沿线路侵入前端设备,应在设备前的每条线路上加装合适的SPD,如电源线(220V或DC12V)、视频线、信号云台控制线。
d)为保障用电设备的防雷、防过电压危害,从配电房到各设备终端要按照规范进行四到五级分布防雷设计、安装。
e)站前广场采用中央照明灯顶部防雷或广场四周立柱防雷措施,候车大厅和综合楼等参照设计方案采用避雷带或单独接闪器防雷。
九、验收方法
工程施工完毕后,由防雷管理所属地即吕梁市防雷监测中心负责验收,验收标准依据相关的防雷规范标准进行,并出具相应的检测报告。
十、工程设计进度表
施工进度表(具体日期安排根据双方所签合同另定)
序号 日期 1 2 3 4 5
1 材料进场
2 地网引线施工
3 破柱筋引线
4 机房均压环制作
5 设备机柜接地
6 等电位连接
7 验收
十一、材料汇总表
序号 项目内容 型号 数量 备注
1 汇流排 (30*3mm)铜带 25M 机房等电位连接
2 汇流排 (50*5mm)扁铜 0.3M 机房接地基准点
3 接地线 (10mm2) 30M 等电位连接
4 接地线 (50mm2) 10M 接地支线
5 接地线 (95mm²) 10 mm 接地干线
6 接地线线耳 10 mm ²;50 mm ²;95 mm ² 6个 连接头
7、接地体(50*50*5镀锌角钢、50*5镀锌扁钢、长效降阻混合剂、连接导体等等)
十二、工程报价汇总表(粗略)
直接材料部分:84600元
运输费: 6600元
间接人工部分:28600元
施工及管理费:32000元
工程验收费: 5000元
税费: 9408元
合计: 166208元
十三、提供的服务
为了不断满足顾客的需求,达到优质服务的目的。坚持“质量第一,用户至上,为客户提供专业、及时、优质、令您满意”的服务宗旨,特制定以下售后服务细则:
1)、提供技术咨询、日常维护知识及安装指导等服务,客户响应时间为一个工作日。
2)、本方案设计安装的工程提供3年承诺服务。在工程验收完毕后开始投入使用日起1年内,如因施工质量问题,将给予免费对本项工程维修施工安装;后2年对所安装的项目的提供维修维护,只收取维修维护材料费。

上一篇:电子设备和电子网络系统防雷技术下一篇:建筑施工现场的防雷保护措施
网站首页 关于我们 新闻动态 防雷产品 解决方案 工程案例 下载中心 联系我们